[ Volcanic Islands : Chapter VI ]

TRACHYTE AND BASALT.–DISTRIBUTION OF VOLCANIC ISLES.

The sinking of crystals in fluid lava.
Specific gravity of the constituent parts of trachyte and of basalt, and
their consequent separation.
Obsidian.
Apparent non-separation of the elements of plutonic rocks.
Origin of trap-dikes in the plutonic series.
Distribution of volcanic islands; their prevalence in the great oceans.
They are generally arranged in lines.
The central volcanoes of Von Buch doubtful.
Volcanic islands bordering continents.
Antiquity of volcanic islands, and their elevation in mass.
Eruptions on parallel lines of fissure within the same geological period.

ON THE SEPARATION OF THE CONSTITUENT MINERALS OF LAVA, ACCORDING TO THEIR
SPECIFIC GRAVITIES.

One side of Fresh-water Bay, in James Island, is formed by the wreck of a
large crater, mentioned in the last chapter, of which the interior has been
filled up by a pool of basalt, about two hundred feet in thickness. This
basalt is of a grey colour, and contains many crystals of glassy albite,
which become much more numerous in the lower, scoriaceous part. This is
contrary to what might have been expected, for if the crystals had been
originally disseminated in equal numbers, the greater intumescence of this
lower scoriaceous part would have made them appear fewer in number. Von
Buch has described a stream of obsidian on the Peak of Teneriffe, in which
the crystals of feldspar become more and more numerous, as the depth or
thickness increases, so that near the lower surface of the stream the lava
even resembles a primary rock. (“Description des Isles Canaries” pages 190
and 191.) Von Buch further states, that M. Dree, in his experiments in
melting lava, found that the crystals of feldspar always tended to
precipitate themselves to the bottom of the crucible. In these cases, I
presume there can be no doubt that the crystals sink from their weight. (In
a mass of molten iron, it is found (“Edinburgh New Philosophical Journal”
volume 24 page 66) that the substances, which have a closer affinity for
oxygen than iron has, rise from the interior of the mass to the surface.
But a similar cause can hardly apply to the separation of the crystals of
these lava-streams. The cooling of the surface of lava seems, in some
cases, to have affected its composition; for Dufrenoy (“Mem. pour servir”
tome 4 page 271) found that the interior parts of a stream near Naples
contained two-thirds of a mineral which was acted on by acids, whilst the
surface consisted chiefly of a mineral unattackable by acids.) The specific
gravity of feldspar varies from 2.4 to 2.58, whilst obsidian seems commonly
to be from 2.3 to 2.4; and in a fluidified state its specific gravity would
probably be less, which would facilitate the sinking of the crystals of
feldspar. (I have taken the specific gravities of the simple minerals from
Von Kobell, one of the latest and best authorities, and of the rocks from
various authorities. Obsidian, according to Phillips, is 2.35; and Jameson
says it never exceeds 2.4; but a specimen from Ascension, weighed by
myself, was 2.42.) At James Island, the crystals of albite, though no doubt
of less weight than the grey basalt, in the parts where compact, might
easily be of greater specific gravity than the scoriaceous mass, formed of
melted lava and bubbles of heated gas.

The sinking of crystals through a viscid substance like molten rock, as is
unequivocally shown to have been the case in the experiments of M. Dree, is
worthy of further consideration, as throwing light on the separation of the
trachytic and basaltic series of lavas. Mr. P. Scrope has speculated on
this subject; but he does not seem to have been aware of any positive
facts, such as those above given; and he has overlooked one very necessary
element, as it appears to me, in the phenomenon–namely, the existence of
either the lighter or heavier mineral in globules or in crystals. In a
substance of imperfect fluidity, like molten rock, it is hardly credible,
that the separate, infinitely small atoms, whether of feldspar, augite, or
of any other mineral, would have power from their slightly different
gravities to overcome the friction caused by their movement; but if the
atoms of any one of these minerals became, whilst the others remained
fluid, united into crystals or granules, it is easy to perceive that from
the lessened friction, their sinking or floating power would be greatly
increased. On the other hand, if all the minerals became granulated at the
same time, it is scarcely possible, from their mutual resistance, that any
separation could take place. A valuable, practical discovery, illustrating
the effect of the granulation of one element in a fluid mass, in aiding its
separation, has lately been made: when lead containing a small proportion
of silver, is constantly stirred whilst cooling, it becomes granulated, and
the grains of imperfect crystals of nearly pure lead sink to the bottom,
leaving a residue of melted metal much richer in silver; whereas if the
mixture be left undisturbed, although kept fluid for a length of time, the
two metals show no signs of separating.

Even the small droplets of silver find its application for many daily purposes like

  • For the band-aids used in the wound dressing and other medical use like pacifiers
  • Ingredient in soaps and other disinfectants
  • Components in refrigerators, telephones, washing machine, calculators
  • Parts of kids’ toys

You can go to this site for knowing more.

(A full and interesting account of
this discovery, by Mr. Pattinson, was read before the British Association
in September 1838. In some alloys, according to Turner “Chemistry” page
210, the heaviest metal sinks, and it appears that this takes place whilst
both metals are fluid. Where there is a considerable difference in gravity,
as between iron and the slag formed during the fusion of the ore, we need
not be surprised at the atoms separating, without either substance being
granulated.) The sole use of the stirring seems to be, the formation of
detached granules. The specific gravity of silver is 10.4, and of lead
11.35: the granulated lead, which sinks, is never absolutely pure, and the
residual fluid metal contains, when richest, only 1/119 part of silver. As
the difference in specific gravity, caused by the different proportions of
the two metals, is so exceedingly small, the separation is probably aided
in a great degree by the difference in gravity between the lead, when
granular though still hot, and when fluid.

In a body of liquified volcanic rock, left for some time without any
violent disturbance, we might expect, in accordance with the above facts,
that if one of the constituent minerals became aggregated into crystals or
granules, or had been enveloped in this state from some previously existing
mass, such crystals or granules would rise or sink, according to their
specific gravity. Now we have plain evidence of crystals being embedded in
many lavas, whilst the paste or basis has continued fluid. I need only
refer, as instances, to the several, great, pseudo-porphyritic streams at
the Galapagos Islands, and to the trachytic streams in many parts of the
world, in which we find crystals of feldspar bent and broken by the
movement of the surrounding, semi-fluid matter. Lavas are chiefly composed
of three varieties of feldspar, varying in specific gravity from 2.4 to
2.74; of hornblende and augite, varying from 3.0 to 3.4; of olivine,
varying from 3.3 to 3.4; and lastly, of oxides of iron, with specific
gravities from 4.8 to 5.2. Hence crystals of feldspar, enveloped in a mass
of liquified, but not highly vesicular lava, would tend to rise to the
upper parts; and crystals or granules of the other minerals, thus
enveloped, would tend to sink. We ought not, however, to expect any perfect
degree of separation in such viscid materials. Trachyte, which consists
chiefly of feldspar, with some hornblende and oxide of iron, has a specific
gravity of about 2.45; whilst basalt, composed chiefly of augite and
feldspar, often with much iron and olivine, has a gravity of about 3.0.
(Trachyte from Java was found by Von Buch to be 2.47; from Auvergne, by De
la Beche, it was 2.42; from Ascension, by myself, it was 2.42. Jameson and
other authors give to basalt a specific gravity of 3.0; but specimens from
Auvergne were found, by De la Beche, to be only 2.78; and from the Giant’s
Causeway, to be 2.91.) Accordingly we find, that where both trachytic and
basaltic streams have proceeded from the same orifice, the trachytic
streams have generally been first erupted owing, as we must suppose, to the
molten lava of this series having accumulated in the upper parts of the
volcanic focus. This order of eruption has been observed by Beudant,
Scrope, and by other authors; three instances, also, have been given in
this volume. As the later eruptions, however, from most volcanic mountains,
burst through their basal parts, owing to the increased height and weight
of the internal column of molten rock, we see why, in most cases, only the
lower flanks of the central, trachytic masses, are enveloped by basaltic
streams. The separation of the ingredients of a mass of lava, would,
perhaps, sometimes take place within the body of a volcanic mountain, if
lofty and of great dimensions, instead of within the underground focus; in
which case, trachytic streams might be poured forth, almost
contemporaneously, or at short recurrent intervals, from its summit, and
basaltic streams from its base: this seems to have taken place at
Teneriffe. (Consult Von Buch’s well-known and admirable “Description
Physique” of this island, which might serve as a model of descriptive
geology.) I need only further remark, that from violent disturbances the
separation of the two series, even under otherwise favourable conditions,
would naturally often be prevented, and likewise their usual order of
eruption be inverted. From the high degree of fluidity of most basaltic
lavas, these perhaps, alone, would in many cases reach the surface.

As we have seen that crystals of feldspar, in the instance described by Von
Buch, sink in obsidian, in accordance with their known greater specific
gravity, we might expect to find in every trachytic district, where
obsidian has flowed as lava, that it had proceeded from the upper or
highest orifices. This, according to Von Buch, holds good in a remarkable
manner both at the Lipari Islands and on the Peak of Teneriffe; at this
latter place obsidian has never flowed from a less height than 9,200 feet.
Obsidian, also, appears to have been erupted from the loftiest peaks of the
Peruvian Cordillera. I will only further observe, that the specific gravity
of quartz varies from 2.6 to 2.8; and therefore, that when present in a
volcanic focus, it would not tend to sink with the basaltic bases; and
this, perhaps, explains the frequent presence, and the abundance of this
mineral, in the lavas of the trachytic series, as observed in previous
parts of this volume.

An objection to the foregoing theory will, perhaps, be drawn from the
plutonic rocks not being separated into two evidently distinct series, of
different specific gravities; although, like the volcanic, they have been
liquified. In answer, it may first be remarked, that we have no evidence of
the atoms of any one of the constituent minerals in the plutonic series
having been aggregated, whilst the others remained fluid, which we have
endeavoured to show is an almost necessary condition of their separation;
on the contrary, the crystals have generally impressed each other with
their forms. (The crystalline paste of phonolite is frequently penetrated
by long needles of hornblende; from which it appears that the hornblende,
though the more fusible mineral, has crystallised before, or at the same
time with a more refractory substance. Phonolite, as far as my observations
serve, in every instance appears to be an injected rock, like those of the
plutonic series; hence probably, like these latter, it has generally been
cooled without repeated and violent disturbances. Those geologists who have
doubted whether granite could have been formed by igneous liquefaction,
because minerals of different degrees of fusibility impress each other with
their forms, could not have been aware of the fact of crystallised
hornblende penetrating phonolite, a rock undoubtedly of igneous origin. The
viscidity, which it is now known, that both feldspar and quartz retain at a
temperature much below their points of fusion, easily explains their mutual
impressment. Consult on this subject Mr. Horner’s paper on Bonn “Geolog.
Transact.” volume 4 page 439; and “L’Institut” with respect to quartz 1839
page 161.)

In the second place, the perfect tranquillity, under which it is probable
that the plutonic masses, buried at profound depths, have cooled, would,
most likely, be highly unfavourable to the separation of their constituent
minerals; for, if the attractive force, which during the progressive
cooling draws together the molecules of the different minerals, has power
sufficient to keep them together, the friction between such half-formed
crystals or pasty globules would effectually prevent the heavier ones from
sinking, or the lighter ones from rising. On the other hand, a small amount
of disturbance, which would probably occur in most volcanic foci, and which
we have seen does not prevent the separation of granules of lead from a
mixture of molten lead and silver, or crystals of feldspar from streams of
lava, by breaking and dissolving the less perfectly formed globules, would
permit the more perfect and therefore unbroken crystals, to sink or rise,
according to their specific gravity.

Although in plutonic rocks two distinct species, corresponding to the
trachytic and basaltic series, do not exist, I much suspect that a certain
amount of separation of their constituent parts has often taken place. I
suspect this from having observed how frequently dikes of greenstone and
basalt intersect widely extended formations of granite and the allied
metamorphic rocks. I have never examined a district in an extensive
granitic region without discovering dikes; I may instance the numerous
trap-dikes, in several districts of Brazil, Chile, and Australia, and at
the Cape of Good Hope: many dikes likewise occur in the great granitic
tracts of India, in the north of Europe, and in other countries. Whence,
then, has the greenstone and basalt, forming these dikes, come? Are we to
suppose, like some of the elder geologists, that a zone of trap is
uniformly spread out beneath the granitic series, which composes, as far as
we know, the foundations of the earth’s crust? Is it not more probable,
that these dikes have been formed by fissures penetrating into partially
cooled rocks of the granitic and metamorphic series, and by their more
fluid parts, consisting chiefly of hornblende, oozing out, and being sucked
into such fissures? At Bahia, in Brazil, in a district composed of gneiss
and primitive greenstone, I saw many dikes, of a dark augitic (for one
crystal certainly was of this mineral) or hornblendic rock, which, as
several appearances clearly proved, either had been formed before the
surrounding mass had become solid, or had together with it been afterwards
thoroughly softened. (Portions of these dikes have been broken off, and are
now surrounded by the primary rocks, with their laminae conformably winding
round them. Dr. Hubbard also (“Silliman’s Journal” volume 34 page 119), has
described an interlacement of trap-veins in the granite of the White
Mountains, which he thinks must have been formed when both rocks were
soft.) On both sides of one of these dikes, the gneiss was penetrated, to
the distance of several yards, by numerous, curvilinear threads or streaks
of dark matter, which resembled in form clouds of the class called cirrhi-
comae; some few of these threads could be traced to their junction with the
dike. When examining them, I doubted whether such hair-like and curvilinear
veins could have been injected, and I now suspect, that instead of having
been injected from the dike, they were its feeders. If the foregoing views
of the origin of trap-dikes in widely extended granitic regions far from
rocks of any other formation, be admitted as probable, we may further
admit, in the case of a great body of plutonic rock, being impelled by
repeated movements into the axis of a mountain-chain, that its more liquid
constituent parts might drain into deep and unseen abysses; afterwards,
perhaps, to be brought to the surface under the form, either of injected
masses of greenstone and augitic porphyry, or of basaltic eruptions. (Mr.
Phillips “Lardner’s Encyclop.” volume 2 page 115 quotes Von Buch’s
statement, that augitic porphyry ranges parallel to, and is found
constantly at the base of, great chains of mountains. Humboldt, also, has
remarked the frequent occurrence of trap-rock, in a similar position; of
which fact I have observed many examples at the foot of the Chilian
Cordillera. The existence of granite in the axes of great mountain chains
is always probable, and I am tempted to suppose, that the laterally
injected masses of augitic porphyry and of trap, bear nearly the same
relation to the granitic axes which basaltic lavas bear to the central
trachytic masses, round the flanks of which they have so frequently been
erupted.) Much of the difficulty which geologists have experienced when
they have compared the composition of volcanic with plutonic formations,
will, I think, be removed, if we may believe that most plutonic masses have
been, to a certain extent, drained of those comparatively weighty and
easily liquified elements, which compose the trappean and basaltic series
of rocks.

ON THE DISTRIBUTION OF VOLCANIC ISLANDS.

During my investigations on coral-reefs, I had occasion to consult the
works of many voyagers, and I was invariably struck with the fact, that
with rare exceptions, the innumerable islands scattered throughout the
Pacific, Indian, and Atlantic Oceans, were composed either of volcanic, or
of modern coral-rocks. It would be tedious to give a long catalogue of all
the volcanic islands; but the exceptions which I have found are easily
enumerated: in the Atlantic, we have St. Paul’s Rock, described in this
volume, and the Falkland Islands, composed of quartz and clay-slate; but
these latter islands are of considerable size, and lie not very far from
the South American coast (Judging from Forster’s imperfect observation,
perhaps Georgia is not volcanic. Dr. Allan is my informant with regard to
the Seychelles. I do not know of what formation Rodriguez, in the Indian
Ocean, is composed.): in the Indian Ocean, the Seychelles (situated in a
line prolonged from Madagascar) consist of granite and quartz: in the
Pacific Ocean, New Caledonia, an island of large size, belongs (as far as
is known) to the primary class. New Zealand, which contains much volcanic
rock and some active volcanoes, from its size cannot be classed with the
small islands, which we are now considering. The presence of a small
quantity of non-volcanic rock, as of clay-slate on three of the Azores
(This is stated on the authority of Count V. de Bedemar, with respect to
Flores and Graciosa (Charlsworth “Magazine of Nat. Hist.” volume 1 page
557). St. Maria has no volcanic rock, according to Captain Boyd (Von Buch
“Descript.” page 365). Chatham Island has been described by Dr. Dieffenbach
in the “Geographical Journal” 1841 page 201. As yet we have received only
imperfect notices on Kerguelen Land, from the Antarctic Expedition.), or of
tertiary limestone at Madeira, or of clay-slate at Chatham Island in the
Pacific, or of lignite at Kerguelen Land, ought not to exclude such islands
or archipelagoes, if formed chiefly of erupted matter, from the volcanic
class.

The composition of the numerous islands scattered through the great oceans
being with such rare exceptions volcanic, is evidently an extension of that
law, and the effect of those same causes, whether chemical or mechanical,
from which it results, that a vast majority of the volcanoes now in action
stand either as islands in the sea, or near its shores. This fact of the
ocean-islands being so generally volcanic is also interesting in relation
to the nature of the mountain-chains on our continents, which are
comparatively seldom volcanic; and yet we are led to suppose that where our
continents now stand an ocean once extended. Do volcanic eruptions, we may
ask, reach the surface more readily through fissures formed during the
first stages of the conversion of the bed of the ocean into a tract of
land?

Looking at the charts of the numerous volcanic archipelagoes, we see that
the islands are generally arranged either in single, double, or triple
rows, in lines which are frequently curved in a slight degree. (Professors
William and Henry Darwin Rogers have lately insisted much, in a memoir read
before the American Association, on the regularly curved lines of elevation
in parts of the Appalachian range.) Each separate island is either rounded,
or more generally elongated in the same direction with the group in which
it stands, but sometimes transversely to it. Some of the groups which are
not much elongated present little symmetry in their forms; M. Virlet
(“Bulletin de la Soc. Geolog.” tome 3 page 110.) states that this is the
case with the Grecian Archipelago: in such groups I suspect (for I am aware
how easy it is to deceive oneself on these points), that the vents are
generally arranged on one line, or on a set of short parallel lines,
intersecting at nearly right angles another line, or set of lines. The
Galapagos Archipelago offers an example of this structure, for most of the
islands and the chief orifices on the largest island are so grouped as to
fall on a set of lines ranging about N.W. by N., and on another set ranging
about W.S.W.: in the Canary Archipelago we have a simpler structure of the
same kind: in the Cape de Verde group, which appears to be the least
symmetrical of any oceanic volcanic archipelago, a N.W. and S.E. line
formed by several islands, if prolonged, would intersect at right angles a
curved line, on which the remaining islands are placed.

Von Buch (“Description des Isles Canaries” page 324.) has classed all
volcanoes under two heads, namely, CENTRAL VOLCANOES, round which numerous
eruptions have taken place on all sides, in a manner almost regular, and
VOLCANIC CHAINS. In the examples given of the first class, as far as
position is concerned, I can see no grounds for their being called
“central;” and the evidence of any difference in mineralogical nature
between CENTRAL VOLCANOES and VOLCANIC CHAINS appears slight. No doubt some
one island in most small volcanic archipelagoes is apt to be considerably
higher than the others; and in a similar manner, whatever the cause may be,
that on the same island one vent is generally higher than all the others.
Von Buch does not include in his class of volcanic chains small
archipelagoes, in which the islands are admitted by him, as at the Azores,
to be arranged in lines; but when viewing on a map of the world how perfect
a series exists from a few volcanic islands placed in a row to a train of
linear archipelagoes following each other in a straight line, and so on to
a great wall like the Cordillera of America, it is difficult to believe
that there exists any essential difference between short and long volcanic
chains. Von Buch (Idem page 393.) states that his volcanic chains surmount,
or are closely connected with, mountain-ranges of primary formation: but if
trains of linear archipelagoes are, in the course of time, by the long-
continued action of the elevatory and volcanic forces, converted into
mountain-ranges, it would naturally result that the inferior primary rocks
would often be uplifted and brought into view.

Some authors have remarked that volcanic islands occur scattered, though at
very unequal distances, along the shores of the great continents, as if in
some measure connected with them. In the case of Juan Fernandez, situated
330 miles from the coast of Chile, there was undoubtedly a connection
between the volcanic forces acting under this island and under the
continent, as was shown during the earthquake of 1835. The islands,
moreover, of some of the small volcanic groups which thus border
continents, are placed in lines, related to those along which the adjoining
shores of the continents trend; I may instance the lines of intersection at
the Galapagos, and at the Cape de Verde Archipelagoes, and the best marked
line of the Canary Islands. If these facts be not merely accidental, we see
that many scattered volcanic islands and small groups are related not only
by proximity, but in the direction of the fissures of eruption to the
neighbouring continents–a relation, which Von Buch considers,
characteristic of his great volcanic chains.

In volcanic archipelagoes, the orifices are seldom in activity on more than
one island at a time; and the greater eruptions usually recur only after
long intervals. Observing the number of craters, that are usually found on
each island of a group, and the vast amount of matter which has been
erupted from them, one is led to attribute a high antiquity even to those
groups, which appear, like the Galapagos, to be of comparatively recent
origin. This conclusion accords with the prodigious amount of degradation,
by the slow action of the sea, which their originally sloping coasts must
have suffered, when they are worn back, as is so often the case, into grand
precipices. We ought not, however, to suppose, in hardly any instance, that
the whole body of matter, forming a volcanic island, has been erupted at
the level, on which it now stands: the number of dikes, which seem
invariably to intersect the interior parts of every volcano, show, on the
principles explained by M. Elie de Beaumont, that the whole mass has been
uplifted and fissured. A connection, moreover, between volcanic eruptions
and contemporaneous elevations in mass has, I think, been shown to exist in
my work on Coral-Reefs, both from the frequent presence of upraised organic
remains, and from the structure of the accompanying coral-reefs. (A similar
conclusion is forced on us, by the phenomena, which accompanied the
earthquake of 1835, at Concepcion, and which are detailed in my paper
(volume 5 page 601) in the “Geological Transactions.”) Finally, I may
remark, that in the same Archipelago, eruptions have taken place within the
historical period on more than one of the parallel lines of fissure: thus,
at the Galapagos Archipelago, eruptions have taken place from a vent on
Narborough Island, and from one on Albemarle Island, which vents do not
fall on the same line; at the Canary Islands, eruptions have taken place in
Teneriffe and Lanzarote; and at the Azores, on the three parallel lines of
Pico, St. Jorge, and Terceira. Believing that a mountain-axis differs
essentially from a volcano, only in plutonic rocks having been injected,
instead of volcanic matter having been ejected, this appears to me an
interesting circumstance; for we may infer from it as probable, that in the
elevation of a mountain-chain, two or more of the parallel lines forming it
may be upraised and injected within the same geological period.

Comments are closed.