The Descent Of Man

Chapter XVII



The law of battle–Special weapons, confined to the males–Cause of absence
of weapons in the female–Weapons common to both sexes, yet primarily
acquired by the male–Other uses of such weapons–Their high importance–
Greater size of the male–Means of defence–On the preference shown by
either sex in the pairing of quadrupeds.

With mammals the male appears to win the female much more through the law
of battle than through the display of his charms. The most timid animals,
not provided with any special weapons for fighting, engage in desperate
conflicts during the season of love. Two male hares have been seen to
fight together until one was killed; male moles often fight, and sometimes
with fatal results; male squirrels engage in frequent contests, “and often
wound each other severely”; as do male beavers, so that “hardly a skin is
without scars.” (1. See Waterton’s account of two hares fighting,
‘Zoologist,’ vol. i. 1843, p. 211. On moles, Bell, ‘Hist. of British
Quadrupeds,’ 1st ed., p. 100. On squirrels, Audubon and Bachman,
Viviparous Quadrupeds of N. America, 1846, p. 269. On beavers, Mr. A.H.
Green, in ‘Journal of Linnean Society, Zoology,’ vol. x. 1869, p. 362.) I
observed the same fact with the hides of the guanacoes in Patagonia; and on
one occasion several were so absorbed in fighting that they fearlessly
rushed close by me. Livingstone speaks of the males of the many animals in
Southern Africa as almost invariably shewing the scars received in former

The law of battle prevails with aquatic as with terrestrial mammals. It is
notorious how desperately male seals fight, both with their teeth and
claws, during the breeding-season; and their hides are likewise often
covered with scars. Male sperm-whales are very jealous at this season; and
in their battles “they often lock their jaws together, and turn on their
sides and twist about”; so that their lower jaws often become distorted.
(2. On the battles of seals, see Capt. C. Abbott in ‘Proc. Zool. Soc.’
1868, p. 191; Mr. R. Brown, ibid. 1868, p. 436; also L. Lloyd, ‘Game Birds
of Sweden,’ 1867, p. 412; also Pennant. On the sperm-whale see Mr. J.H.
Thompson, in ‘Proc. Zool. Soc.’ 1867, p. 246.)

All male animals which are furnished with special weapons for fighting, are
well known to engage in fierce battles. The courage and the desperate
conflicts of stags have often been described; their skeletons have been
found in various parts of the world, with the horns inextricably locked
together, shewing how miserably the victor and vanquished had perished.
(3. See Scrope (‘Art of Deer-stalking,’ p. 17) on the locking of the horns
with the Cervus elaphus. Richardson, in ‘Fauna Bor. Americana,’ 1829, p.
252, says that the wapiti, moose, and reindeer have been found thus locked
together. Sir. A. Smith found at the Cape of Good Hope the skeletons of
two gnus in the same condition.) No animal in the world is so dangerous as
an elephant in must. Lord Tankerville has given me a graphic description
of the battles between the wild bulls in Chillingham Park, the descendants,
degenerated in size but not in courage, of the gigantic Bos primigenius.
In 1861 several contended for mastery; and it was observed that two of the
younger bulls attacked in concert the old leader of the herd, overthrew and
disabled him, so that he was believed by the keepers to be lying mortally
wounded in a neighbouring wood. But a few days afterwards one of the young
bulls approached the wood alone; and then the “monarch of the chase,” who
had been lashing himself up for vengeance, came out and, in a short time,
killed his antagonist. He then quietly joined the herd, and long held
undisputed sway. Admiral Sir B.J. Sulivan informs me that, when he lived
in the Falkland Islands, he imported a young English stallion, which
frequented the hills near Port William with eight mares. On these hills
there were two wild stallions, each with a small troop of mares; “and it is
certain that these stallions would never have approached each other without
fighting. Both had tried singly to fight the English horse and drive away
his mares, but had failed. One day they came in TOGETHER and attacked him.
This was seen by the capitan who had charge of the horses, and who, on
riding to the spot, found one of the two stallions engaged with the English
horse, whilst the other was driving away the mares, and had already
separated four from the rest. The capitan settled the matter by driving
the whole party into the corral, for the wild stallions would not leave the

Male animals which are provided with efficient cutting or tearing teeth for
the ordinary purposes of life, such as the carnivora, insectivora, and
rodents, are seldom furnished with weapons especially adapted for fighting
with their rivals. The case is very different with the males of many other
animals. We see this in the horns of stags and of certain kinds of
antelopes in which the females are hornless. With many animals the canine
teeth in the upper or lower jaw, or in both, are much larger in the males
than in the females, or are absent in the latter, with the exception
sometimes of a hidden rudiment. Certain antelopes, the musk-deer, camel,
horse, boar, various apes, seals, and the walrus, offer instances. In the
females of the walrus the tusks are sometimes quite absent. (4. Mr.
Lamont (‘Seasons with the Sea-Horses,’ 1861, p. 143) says that a good tusk
of the male walrus weighs 4 pounds, and is longer than that of the female,
which weighs about 3 pounds. The males are described as fighting
ferociously. On the occasional absence of the tusks in the female, see Mr.
R. Brown, ‘Proceedings, Zoological Society,’ 1868, p. 429.) In the male
elephant of India and in the male dugong (5. Owen, ‘Anatomy of
Vertebrates,’ vol. iii. p. 283.) the upper incisors form offensive weapons.
In the male narwhal the left canine alone is developed into the well-known,
spirally-twisted, so-called horn, which is sometimes from nine to ten feet
in length. It is believed that the males use these horns for fighting
together; for “an unbroken one can rarely be got, and occasionally one may
be found with the point of another jammed into the broken place.” (6. Mr.
R. Brown, in ‘Proc. Zool. Soc.’ 1869, p. 553. See Prof. Turner, in
‘Journal of Anat. and Phys.’ 1872, p. 76, on the homological nature of
these tusks. Also Mr. J.W. Clarke on two tusks being developed in the
males, in ‘Proceedings of the Zoological Society,’ 1871, p. 42.) The tooth
on the opposite side of the head in the male consists of a rudiment about
ten inches in length, which is embedded in the jaw; but sometimes, though
rarely, both are equally developed on the two sides. In the female both
are always rudimentary. The male cachalot has a larger head than that of
the female, and it no doubt aids him in his aquatic battles. Lastly, the
adult male ornithorhynchus is provided with a remarkable apparatus, namely
a spur on the foreleg, closely resembling the poison-fang of a venomous
snake; but according to Harting, the secretion from the gland is not
poisonous; and on the leg of the female there is a hollow, apparently for
the reception of the spur. (7. Owen on the cachalot and Ornithorhynchus,
ibid. vol. iii. pp. 638, 641. Harting is quoted by Dr. Zouteveen in the
Dutch translation of this work, vol. ii. p. 292.)

When the males are provided with weapons which in the females are absent,
there can be hardly a doubt that these serve for fighting with other males;
and that they were acquired through sexual selection, and were transmitted
to the male sex alone. It is not probable, at least in most cases, that
the females have been prevented from acquiring such weapons, on account of
their being useless, superfluous, or in some way injurious. On the
contrary, as they are often used by the males for various purposes, more
especially as a defence against their enemies, it is a surprising fact that
they are so poorly developed, or quite absent, in the females of so many
animals. With female deer the development during each recurrent season of
great branching horns, and with female elephants the development of immense
tusks, would be a great waste of vital power, supposing that they were of
no use to the females. Consequently, they would have tended to be
eliminated in the female through natural selection; that is, if the
successive variations were limited in their transmission to the female sex,
for otherwise the weapons of the males would have been injuriously
affected, and this would have been a greater evil. On the whole, and from
the consideration of the following facts, it seems probable that when the
various weapons differ in the two sexes, this has generally depended on the
kind of transmission which has prevailed.

As the reindeer is the one species in the whole family of Deer, in which
the female is furnished with horns, though they are somewhat smaller,
thinner, and less branched than in the male, it might naturally be thought
that, at least in this case, they must be of some special service to her.
The female retains her horns from the time when they are fully developed,
namely, in September, throughout the winter until April or May, when she
brings forth her young. Mr. Crotch made particular enquiries for me in
Norway, and it appears that the females at this season conceal themselves
for about a fortnight in order to bring forth their young, and then
reappear, generally hornless. In Nova Scotia, however, as I hear from Mr.
H. Reeks, the female sometimes retains her horns longer. The male on the
other hand casts his horns much earlier, towards the end of November. As
both sexes have the same requirements and follow the same habits of life,
and as the male is destitute of horns during the winter, it is improbable
that they can be of any special service to the female during this season,
which includes the larger part of the time during which she is horned. Nor
is it probable that she can have inherited horns from some ancient
progenitor of the family of deer, for, from the fact of the females of so
many species in all quarters of the globe not having horns, we may conclude
that this was the primordial character of the group. (8. On the structure
and shedding of the horns of the reindeer, Hoffberg, ‘Amoenitates Acad.’
vol. iv. 1788, p. 149. See Richardson, ‘Fauna Bor. Americana,’ p. 241, in
regard to the American variety or species: also Major W. Ross King, ‘The
Sportsman in Canada,’ 1866, p. 80.

The horns of the reindeer are developed at a most unusually early age; but
what the cause of this may be is not known. The effect has apparently been
the transference of the horns to both sexes. We should bear in mind that
horns are always transmitted through the female, and that she has a latent
capacity for their development, as we see in old or diseased females. (9.
Isidore Geoffroy St.-Hilaire, ‘Essais de Zoolog. Generale,’ 1841, p. 513.
Other masculine characters, besides the horns, are sometimes similarly
transferred to the female; thus Mr. Boner, in speaking of an old female
chamois (‘Chamois Hunting in the Mountains of Bavaria,’ 1860, 2nd ed., p.
363), says, “not only was the head very male-looking, but along the back
there was a ridge of long hair, usually to be found only in bucks.”)
Moreover the females of some other species of deer exhibit, either normally
or occasionally, rudiments of horns; thus the female of Cervulus moschatus
has “bristly tufts, ending in a knob, instead of a horn”; and “in most
specimens of the female wapiti (Cervus canadensis) there is a sharp bony
protuberance in the place of the horn.” (10. On the Cervulus, Dr. Gray,
‘Catalogue of Mammalia in the British Museum,’ part iii. p. 220. On the
Cervus canadensis or wapiti, see Hon. J.D. Caton, ‘Ottawa Academy of Nat.
Sciences,’ May 1868, p. 9.) From these several considerations we may
conclude that the possession of fairly well-developed horns by the female
reindeer, is due to the males having first acquired them as weapons for
fighting with other males; and secondarily to their development from some
unknown cause at an unusually early age in the males, and their consequent
transference to both sexes.

Turning to the sheath-horned ruminants: with antelopes a graduated series
can be formed, beginning with species, the females of which are completely
destitute of horns–passing on to those which have horns so small as to be
almost rudimentary (as with the Antilocapra americana, in which species
they are present in only one out of four or five females (11. I am
indebted to Dr. Canfield for this information; see also his paper in the
‘Proceedings of the Zoological Society,’ 1866, p. 105.))–to those which
have fairly developed horns, but manifestly smaller and thinner than in the
male and sometimes of a different shape (12. For instance the horns of the
female Ant. euchore resemble those of a distinct species, viz. the Ant.
dorcas var. Corine, see Desmarest, ‘Mammalogie,’ p. 455.),–and ending with
those in which both sexes have horns of equal size. As with the reindeer,
so with antelopes, there exists, as previously shewn, a relation between
the period of the development of the horns and their transmission to one or
both sexes; it is therefore probable that their presence or absence in the
females of some species, and their more or less perfect condition in the
females of other species, depends, not on their being of any special use,
but simply on inheritance. It accords with this view that even in the same
restricted genus both sexes of some species, and the males alone of others,
are thus provided. It is also a remarkable fact that, although the females
of Antilope bezoartica are normally destitute of horns, Mr. Blyth has seen
no less than three females thus furnished; and there was no reason to
suppose that they were old or diseased.

In all the wild species of goats and sheep the horns are larger in the male
than in the female, and are sometimes quite absent in the latter. (13.
Gray, ‘Catalogue of Mammalia, the British Museum,’ part iii. 1852, p. 160.)
In several domestic breeds of these two animals, the males alone are
furnished with horns; and in some breeds, for instance, in the sheep of
North Wales, though both sexes are properly horned, the ewes are very
liable to be hornless. I have been informed by a trustworthy witness, who
purposely inspected a flock of these same sheep during the lambing season,
that the horns at birth are generally more fully developed in the male than
in the female. Mr. J. Peel crossed his Lonk sheep, both sexes of which
always bear horns, with hornless Leicesters and hornless Shropshire Downs;
and the result was that the male offspring had their horns considerably
reduced, whilst the females were wholly destitute of them. These several
facts indicate that, with sheep, the horns are a much less firmly fixed
character in the females than in the males; and this leads us to look at
the horns as properly of masculine origin.

With the adult musk-ox (Ovibos moschatus) the horns of the male are larger
than those of the female, and in the latter the bases do not touch. (14.
Richardson, ‘Fauna Bor. Americana,’ p. 278.) In regard to ordinary cattle
Mr. Blyth remarks: “In most of the wild bovine animals the horns are both
longer and thicker in the bull than in the cow, and in the cow-banteng (Bos
sondaicus) the horns are remarkably small, and inclined much backwards. In
the domestic races of cattle, both of the humped and humpless types, the
horns are short and thick in the bull, longer and more slender in the cow
and ox; and in the Indian buffalo, they are shorter and thicker in the
bull, longer and more slender in the cow. In the wild gaour (B. gaurus)
the horns are mostly both longer and thicker in the bull than in the cow.”
(15. ‘Land and Water,’ 1867, p. 346.) Dr. Forsyth Major also informs me
that a fossil skull, believed to be that of the female Bos etruscus, has
been found in Val d’Arno, which is wholly without horns. In the Rhinoceros
simus, as I may add, the horns of the female are generally longer but less
powerful than in the male; and in some other species of rhinoceros they are
said to be shorter in the female. (16. Sir Andrew Smith, ‘Zoology of S.
Africa,’ pl. xix. Owen, ‘Anatomy of Vertebrates,’ vol. iii. p. 624.) From
these various facts we may infer as probable that horns of all kinds, even
when they are equally developed in the two sexes, were primarily acquired
by the male in order to conquer other males, and have been transferred more
or less completely to the female.

The effects of castration deserve notice, as throwing light on this same
point. Stags after the operation never renew their horns. The male
reindeer, however, must be excepted, as after castration he does renew
them. This fact, as well as the possession of horns by both sexes, seems
at first to prove that the horns in this species do not constitute a sexual
character (17. This is the conclusion of Seidlitz, ‘Die Darwinsche
Theorie,’ 1871, p. 47.); but as they are developed at a very early age,
before the sexes differ in constitution, it is not surprising that they
should be unaffected by castration, even if they were aboriginally acquired
by the male. With sheep both sexes properly bear horns; and I am informed
that with Welch sheep the horns of the males are considerably reduced by
castration; but the degree depends much on the age at which the operation
is performed, as is likewise the case with other animals. Merino rams have
large horns, whilst the ewes “generally speaking are without horns”; and in
this breed castration seems to produce a somewhat greater effect, so that
if performed at an early age the horns “remain almost undeveloped.” (18.
I am much obliged to Prof. Victor Carus, for having made enquiries for me
in Saxony on this subject. H. von Nathusius (‘Viehzucht,’ 1872, p. 64)
says that the horns of sheep castrated at an early period, either
altogether disappear or remain as mere rudiments; but I do not know whether
he refers to merinos or to ordinary breeds.) On the Guinea coast there is
a breed in which the females never bear horns, and, as Mr. Winwood Reade
informs me, the rams after castration are quite destitute of them. With
cattle, the horns of the males are much altered by castration; for instead
of being short and thick, they become longer than those of the cow, but
otherwise resemble them. The Antilope bezoartica offers a somewhat
analogous case: the males have long straight spiral horns, nearly parallel
to each other, and directed backwards; the females occasionally bear horns,
but these when present are of a very different shape, for they are not
spiral, and spreading widely, bend round with the points forwards. Now it
is a remarkable fact that, in the castrated male, as Mr. Blyth informs me,
the horns are of the same peculiar shape as in the female, but longer and
thicker. If we may judge from analogy, the female probably shews us, in
these two cases of cattle and the antelope, the former condition of the
horns in some early progenitor of each species. But why castration should
lead to the reappearance of an early condition of the horns cannot be
explained with any certainty. Nevertheless, it seems probable, that in
nearly the same manner as the constitutional disturbance in the offspring,
caused by a cross between two distinct species or races, often leads to the
reappearance of long-lost characters (19. I have given various experiments
and other evidence proving that this is the case, in my ‘Variation of
Animals and Plants under Domestication,’ vol. ii. 1868, pp. 39-47.); so
here, the disturbance in the constitution of the individual, resulting from
castration, produces the same effect.

The tusks of the elephant, in the different species or races, differ
according to sex, nearly as do the horns of ruminants. In India and
Malacca the males alone are provided with well-developed tusks. The
elephant of Ceylon is considered by most naturalists as a distinct race,
but by some as a distinct species, and here “not one in a hundred is found
with tusks, the few that possess them being exclusively males.” (20. Sir
J. Emerson Tennent, ‘Ceylon,’ 1859, vol. ii. p. 274. For Malacca, ‘Journal
of Indian Archipelago,’ vol. iv. p. 357.) The African elephant is
undoubtedly distinct, and the female has large well-developed tusks, though
not so large as those of the male.

These differences in the tusks of the several races and species of
elephants–the great variability of the horns of deer, as notably in the
wild reindeer–the occasional presence of horns in the female Antilope
Bezoartica, and their frequent absence in the female of Antilocapra
americana–the presence of two tusks in some few male narwhals–the
complete absence of tusks in some female walruses–are all instances of the
extreme variability of secondary sexual characters, and of their liability
to differ in closely-allied forms.

Although tusks and horns appear in all cases to have been primarily
developed as sexual weapons, they often serve other purposes. The elephant
uses his tusks in attacking the tiger; according to Bruce, he scores the
trunks of trees until they can be thrown down easily, and he likewise thus
extracts the farinaceous cores of palms; in Africa he often uses one tusk,
always the same, to probe the ground and thus ascertain whether it will
bear his weight. The common bull defends the herd with his horns; and the
elk in Sweden has been known, according to Lloyd, to strike a wolf dead
with a single blow of his great horns. Many similar facts could be given.
One of the most curious secondary uses to which the horns of an animal may
be occasionally put is that observed by Captain Hutton (21. ‘Calcutta
Journal of Natural History,’ vol. ii, 1843, p. 526.) with the wild goat
(Capra aegagrus) of the Himalayas and, as it is also said with the ibex,
namely that when the male accidentally falls from a height he bends inwards
his head, and by alighting on his massive horns, breaks the shock. The
female cannot thus use her horns, which are smaller, but from her more
quiet disposition she does not need this strange kind of shield so much.

Each male animal uses his weapons in his own peculiar fashion. The common
ram makes a charge and butts with such force with the bases of his horns,
that I have seen a powerful man knocked over like a child. Goats and
certain species of sheep, for instance the Ovis cycloceros of Afghanistan
(22. Mr. Blyth, in ‘Land and Water,’ March, 1867, p. 134, on the authority
of Capt. Hutton and others. For the wild Pembrokeshire goats, see the
‘Field,’ 1869, p. 150.), rear on their hind legs, and then not only butt,
but “make a cut down and a jerk up, with the ribbed front of their
scimitar-shaped horn, as with a sabre. When the O. cycloceros attacked a
large domestic ram, who was a noted bruiser, he conquered him by the sheer
novelty of his mode of fighting, always closing at once with his adversary,
and catching him across the face and nose with a sharp drawing jerk of the
head, and then bounding out of the way before the blow could be returned.”
In Pembrokeshire a male goat, the master of a flock which during several
generations had run wild, was known to have killed several males in single
combat; this goat possessed enormous horns, measuring thirty-nine inches in
a straight line from tip to tip. The common bull, as every one knows,
gores and tosses his opponent; but the Italian buffalo is said never to use
his horns: he gives a tremendous blow with his convex forehead, and then
tramples on his fallen enemy with his knees–an instinct which the common
bull does not possess. (23. M. E.M. Bailly, “Sur l’usage des cornes,”
etc., .Annal des Sciences Nat.’ tom. ii. 1824, p. 369.) Hence a dog who
pins a buffalo by the nose is immediately crushed. We must, however,
remember that the Italian buffalo has been long domesticated, and it is by
no means certain that the wild parent-form had similar horns. Mr. Bartlett
informs me that when a female Cape buffalo (Bubalus caffer) was turned into
an enclosure with a bull of the same species, she attacked him, and he in
return pushed her about with great violence. But it was manifest to Mr.
Bartlett that, had not the bull shewn dignified forbearance, he could
easily have killed her by a single lateral thrust with his immense horns.
The giraffe uses his short, hair-covered horns, which are rather longer in
the male than in the female, in a curious manner; for, with his long neck,
he swings his head to either side, almost upside down, with such force that
I have seen a hard plank deeply indented by a single blow.

[Fig. 63. Oryx leucoryx, male (from the Knowsley Menagerie).]

With antelopes it is sometimes difficult to imagine how they can possibly
use their curiously-shaped horns; thus the springboc (Ant. euchore) has
rather short upright horns, with the sharp points bent inwards almost at
right angles, so as to face each other; Mr. Bartlett does not know how they
are used, but suggests that they would inflict a fearful wound down each
side of the face of an antagonist. The slightly-curved horns of the Oryx
leucoryx (Fig. 63) are directed backwards, and are of such length that
their points reach beyond the middle of the back, over which they extend in
almost parallel lines. Thus they seem singularly ill-fitted for fighting;
but Mr. Bartlett informs me that when two of these animals prepare for
battle, they kneel down, with their beads between their fore legs, and in
this attitude the horns stand nearly parallel and close to the ground, with
the points directed forwards and a little upwards. The combatants then
gradually approach each other, and each endeavours to get the upturned
points under the body of the other; if one succeeds in doing this, he
suddenly springs up, throwing up his head at the same time, and can thus
wound or perhaps even transfix his antagonist. Both animals always kneel
down, so as to guard as far as possible against this manoeuvre. It has
been recorded that one of these antelopes has used his horn with effect
even against a lion; yet from being forced to place his head between the
forelegs in order to bring the points of the horns forward, he would
generally be under a great disadvantage when attacked by any other animal.
It is, therefore, not probable that the horns have been modified into their
present great length and peculiar position, as a protection against beasts
of prey. We can however see that, as soon as some ancient male progenitor
of the Oryx acquired moderately long horns, directed a little backwards, he
would be compelled, in his battles with rival males, to bend his head
somewhat inwards or downwards, as is now done by certain stags; and it is
not improbable that he might have acquired the habit of at first
occasionally and afterwards of regularly kneeling down. In this case it is
almost certain that the males which possessed the longest horns would have
had a great advantage over others with shorter horns; and then the horns
would gradually have been rendered longer and longer, through sexual
selection, until they acquired their present extraordinary length and

With stags of many kinds the branches of the horns offer a curious case of
difficulty; for certainly a single straight point would inflict a much more
serious wound than several diverging ones. In Sir Philip Egerton’s museum
there is a horn of the red-deer (Cervus elaphus), thirty inches in length,
with “not fewer than fifteen snags or branches”; and at Moritzburg there is
still preserved a pair of antlers of a red-deer, shot in 1699 by Frederick
I., one of which bears the astonishing number of thirty-three branches and
the other twenty-seven, making altogether sixty branches. Richardson
figures a pair of antlers of the wild reindeer with twenty-nine points.
(24. On the horns of red-deer, Owen, ‘British Fossil Mammals,’ 1846, p.
478; Richardson on the horns of the reindeer, ‘Fauna Bor. Americana,’ 1829,
p. 240. I am indebted to Prof. Victor Carus, for the Moritzburg case.)
From the manner in which the horns are branched, and more especially from
deer being known occasionally to fight together by kicking with their fore-
feet (25. Hon. J.D. Caton (‘Ottawa Acad. of Nat. Science,’ May 1868, p. 9)
says that the American deer fight with their fore-feet, after “the question
of superiority has been once settled and acknowledged in the herd.”
Bailly, ‘Sur l’Usage des cornes,’ ‘Annales des Sciences Nat.’ tom. ii.
1824, p. 371.), M. Bailly actually comes to the conclusion that their horns
are more injurious than useful to them. But this author overlooks the
pitched battles between rival males. As I felt much perplexed about the
use or advantage of the branches, I applied to Mr. McNeill of Colonsay, who
has long and carefully observed the habits of red-deer, and he informs me
that he has never seen some of the branches brought into use, but that the
brow antlers, from inclining downwards, are a great protection to the
forehead, and their points are likewise used in attack. Sir Philip Egerton
also informs me both as to red-deer and fallow-deer that, in fighting, they
suddenly dash together, and getting their horns fixed against each other’s
bodies, a desperate struggle ensues. When one is at last forced to yield
and turn round, the victor endeavours to plunge his brow antlers into his
defeated foe. It thus appears that the upper branches are used chiefly or
exclusively for pushing and fencing. Nevertheless in some species the
upper branches are used as weapons of offence; when a man was attacked by a
wapiti deer (Cervus canadensis) in Judge Caton’s park in Ottawa, and
several men tried to rescue him, the stag “never raised his head from the
ground; in fact he kept his face almost flat on the ground, with his nose
nearly between his fore feet, except when he rolled his head to one side to
take a new observation preparatory to a plunge.” In this position the ends
of the horns were directed against his adversaries. “In rolling his head
he necessarily raised it somewhat, because his antlers were so long that he
could not roll his head without raising them on one side, while, on the
other side they touched the ground.” The stag by this procedure gradually
drove the party of rescuers backwards to a distance of 150 or 200 feet; and
the attacked man was killed. (26. See a most interesting account in the
Appendix to Hon. J.D. Caton’s paper, as above quoted.)

[Fig. 64. Strepsiceros Kudu (from Sir Andrew Smith’s ‘Zoology of South

Although the horns of stags are efficient weapons, there can, I think be no
doubt that a single point would have been much more dangerous than a
branched antler; and Judge Caton, who has had large experience with deer,
fully concurs in this conclusion. Nor do the branching horns, though
highly important as a means of defence against rival stags, appear
perfectly well adapted for this purpose, as they are liable to become
interlocked. The suspicion has therefore crossed my mind that they may
serve in part as ornaments. That the branched antlers of stags as well as
the elegant lyrated horns of certain antelopes, with their graceful double
curvature (Fig. 64), are ornamental in our eyes, no one will dispute. If,
then, the horns, like the splendid accoutrements of the knights of old, add
to the noble appearance of stags and antelopes, they may have been modified
partly for this purpose, though mainly for actual service in battle; but I
have no evidence in favour of this belief.

An interesting case has lately been published, from which it appears that
the horns of a deer in one district in the United States are now being
modified through sexual and natural selection. A writer in an excellent
American Journal (27. The ‘American Naturalist,’ Dec. 1869, p. 552.) says,
that he has hunted for the last twenty-one years in the Adirondacks, where
the Cervus virginianus abounds. About fourteen years ago he first heard of
SPIKE-HORN BUCKS. These became from year to year more common; about five
years ago he shot one, and afterwards another, and now they are frequently
killed. “The spike-horn differs greatly from the common antler of the C.
virginianus. It consists of a single spike, more slender than the antler,
and scarcely half so long, projecting forward from the brow, and
terminating in a very sharp point. It gives a considerable advantage to
its possessor over the common buck. Besides enabling him to run more
swiftly through the thick woods and underbrush (every hunter knows that
does and yearling bucks run much more rapidly than the large bucks when
armed with their cumbrous antlers), the spike-horn is a more effective
weapon than the common antler. With this advantage the spike-horn bucks
are gaining upon the common bucks, and may, in time, entirely supersede
them in the Adirondacks. Undoubtedly, the first spike-horn buck was merely
an accidental freak of nature. But his spike-horns gave him an advantage,
and enabled him to propagate his peculiarity. His descendants having a
like advantage, have propagated the peculiarity in a constantly increasing
ratio, till they are slowly crowding the antlered deer from the region they
inhabit.” A critic has well objected to this account by asking, why, if
the simple horns are now so advantageous, were the branched antlers of the
parent-form ever developed? To this I can only answer by remarking, that a
new mode of attack with new weapons might be a great advantage, as shewn by
the case of the Ovis cycloceros, who thus conquered a domestic ram famous
for his fighting power. Though the branched antlers of a stag are well
adapted for fighting with his rivals, and though it might be an advantage
to the prong-horned variety slowly to acquire long and branched horns, if
he had to fight only with others of the same kind, yet it by no means
follows that branched horns would be the best fitted for conquering a foe
differently armed. In the foregoing case of the Oryx leucoryx, it is
almost certain that the victory would rest with an antelope having short
horns, and who therefore did not need to kneel down, though an oryx might
profit by having still longer horns, if he fought only with his proper

Male quadrupeds, which are furnished with tusks, use them in various ways,
as in the case of horns. The boar strikes laterally and upwards; the musk-
deer downwards with serious effect. (28. Pallas, ‘Spicilegia Zoologica,’
fasc. xiii. 1779, p. 18.) The walrus, though having so short a neck and so
unwieldy a body, “can strike either upwards, or downwards, or sideways,
with equal dexterity.” (29. Lamont, ‘Seasons with the Sea-Horses,’ 1861,
p. 141.) I was informed by the late Dr. Falconer, that the Indian elephant
fights in a different manner according to the position and curvature of his
tusks. When they are directed forwards and upwards he is able to fling a
tiger to a great distance–it is said to even thirty feet; when they are
short and turned downwards he endeavours suddenly to pin the tiger to the
ground and, in consequence, is dangerous to the rider, who is liable to be
jerked off the howdah. (30. See also Corse (‘Philosophical Transactions,’
1799, p. 212) on the manner in which the short-tusked Mooknah variety
attacks other elephants.)

Very few male quadrupeds possess weapons of two distinct kinds specially
adapted for fighting with rival males. The male muntjac-deer (Cervulus),
however, offers an exception, as he is provided with horns and exserted
canine teeth. But we may infer from what follows that one form of weapon
has often been replaced in the course of ages by another. With ruminants
the development of horns generally stands in an inverse relation with that
of even moderately developed canine teeth. Thus camels, guanacoes,
chevrotains, and musk-deer, are hornless, and they have efficient canines;
these teeth being “always of smaller size in the females than in the
males.” The Camelidae have, in addition to their true canines, a pair of
canine-shaped incisors in their upper jaws. (31. Owen, ‘Anatomy of
Vertebrates,’ vol. iii. p. 349.) Male deer and antelopes, on the other
hand, possess horns, and they rarely have canine teeth; and these, when
present, are always of small size, so that it is doubtful whether they are
of any service in their battles. In Antilope montana they exist only as
rudiments in the young male, disappearing as he grows old; and they are
absent in the female at all ages; but the females of certain other
antelopes and of certain deer have been known occasionally to exhibit
rudiments of these teeth. (32. See Ruppell (in ‘Proc. Zoolog. Soc.’ Jan.
12, 1836, p. 3) on the canines in deer and antelopes, with a note by Mr.
Martin on a female American deer. See also Falconer (‘Palaeont. Memoirs
and Notes,’ vol. i. 1868, p. 576) on canines in an adult female deer. In
old males of the musk-deer the canines (Pallas, ‘Spic. Zoolog.’ fasc. xiii.
1779, p. 18) sometimes grow to the length of three inches, whilst in old
females a rudiment projects scarcely half an inch above the gums.)
Stallions have small canine teeth, which are either quite absent or
rudimentary in the mare; but they do not appear to be used in fighting, for
stallions bite with their incisors, and do not open their mouths wide like
camels and guanacoes. Whenever the adult male possesses canines, now
inefficient, whilst the female has either none or mere rudiments, we may
conclude that the early male progenitor of the species was provided with
efficient canines, which have been partially transferred to the females.
The reduction of these teeth in the males seems to have followed from some
change in their manner of fighting, often (but not in the horse) caused by
the development of new weapons.

Tusks and horns are manifestly of high importance to their possessors, for
their development consumes much organised matter. A single tusk of the
Asiatic elephant–one of the extinct woolly species–and of the African
elephant, have been known to weigh respectively 150, 160, and 180 pounds;
and even greater weights have been given by some authors. (33. Emerson
Tennent, ‘Ceylon,’ 1859, vol. ii. p. 275; Owen, ‘British Fossil Mammals,’
1846, p. 245.) With deer, in which the horns are periodically renewed, the
drain on the constitution must be greater; the horns, for instance, of the
moose weigh from fifty to sixty pounds, and those of the extinct Irish elk
from sixty to seventy pounds–the skull of the latter weighing on an
average only five pounds and a quarter. Although the horns are not
periodically renewed in sheep, yet their development, in the opinion of
many agriculturists, entails a sensible loss to the breeder. Stags,
moreover, in escaping from beasts of prey are loaded with an additional
weight for the race, and are greatly retarded in passing through a woody
country. The moose, for instance, with horns extending five and a half
feet from tip to tip, although so skilful in their use that he will not
touch or break a twig when walking quietly, cannot act so dexterously
whilst rushing away from a pack of wolves. “During his progress he holds
his nose up, so as to lay the horns horizontally back; and in this attitude
cannot see the ground distinctly.” (34. Richardson, ‘Fauna Bor.
Americana,’ on the moose, Alces palmata, pp. 236, 237; on the expanse of
the horns, ‘Land and Water,’ 1869, p. 143. See also Owen, ‘British Fossil
Mammals,’ on the Irish elk, pp. 447, 455.) The tips of the horns of the
great Irish elk were actually eight feet apart! Whilst the horns are
covered with velvet, which lasts with red-deer for about twelve weeks, they
are extremely sensitive to a blow; so that in Germany the stags at this
time somewhat change their habits, and avoiding dense forests, frequent
young woods and low thickets. (35. ‘Forest Creatures,’ by C. Boner, 1861,
p. 60.) These facts remind us that male birds have acquired ornamental
plumes at the cost of retarded flight, and other ornaments at the cost of
some loss of power in their battles with rival males.

With mammals, when, as is often the case, the sexes differ in size, the
males are almost always larger and stronger. I am informed by Mr. Gould
that this holds good in a marked manner with the marsupials of Australia,
the males of which appear to continue growing until an unusually late age.
But the most extraordinary case is that of one of the seals (Callorhinus
ursinus), a full-grown female weighing less than one-sixth of a full-grown
male. (36. See the very interesting paper by Mr. J.A. Allen in ‘Bull.
Mus. Comp. Zoology of Cambridge, United States,’ vol. ii. No. 1, p. 82.
The weights were ascertained by a careful observer, Capt. Bryant. Dr. Gill
in ‘The American Naturalist,’ January, 1871, Prof. Shaler on the relative
size of the sexes of whales, ‘American Naturalist,’ January, 1873.) Dr.
Gill remarks that it is with the polygamous seals, the males of which are
well known to fight savagely together, that the sexes differ much in size;
the monogamous species differing but little. Whales also afford evidence
of the relation existing between the pugnacity of the males and their large
size compared with that of the female; the males of the right-whales do not
fight together, and they are not larger, but rather smaller, than their
females; on the other hand, male sperm-whales fight much together, and
their bodies are “often found scarred with the imprint of their rival’s
teeth,” and they are double the size of the females. The greater strength
of the male, as Hunter long ago remarked (37. ‘Animal Economy,’ p. 45.),
is invariably displayed in those parts of the body which are brought into
action in fighting with rival males–for instance, in the massive neck of
the bull. Male quadrupeds are also more courageous and pugnacious than the
females. There can be little doubt that these characters have been gained,
partly through sexual selection, owing to a long series of victories, by
the stronger and more courageous males over the weaker, and partly through
the inherited effects of use. It is probable that the successive
variations in strength, size, and courage, whether due to mere variability
or to the effects of use, by the accumulation of which male quadrupeds have
acquired these characteristic qualities, occurred rather late in life, and
were consequently to a large extent limited in their transmission to the
same sex.

From these considerations I was anxious to obtain information as to the
Scotch deer-hound, the sexes of which differ more in size than those of any
other breed (though blood-hounds differ considerably), or than in any wild
canine species known to me. Accordingly, I applied to Mr. Cupples, well
known for his success with this breed, who has weighed and measured many of
his own dogs, and who has with great kindness collected for me the
following facts from various sources. Fine male dogs, measured at the
shoulder, range from 28 inches, which is low, to 33 or even 34 inches in
height; and in weight from 80 pounds, which is light, to 120 pounds, or
even more. The females range in height from 23 to 27, or even to 28
inches; and in weight from 50 to 70, or even 80 pounds. (38. See also
Richardson’s ‘Manual on the Dog,’ p. 59. Much valuable information on the
Scottish deer-hound is given by Mr. McNeill, who first called attention to
the inequality in size between the sexes, in Scrope’s ‘Art of Deer-
Stalking.’ I hope that Mr. Cupples will keep to his intention of
publishing a full account and history of this famous breed.) Mr. Cupples
concludes that from 95 to 100 pounds for the male, and 70 for the female,
would be a safe average; but there is reason to believe that formerly both
sexes attained a greater weight. Mr. Cupples has weighed puppies when a
fortnight old; in one litter the average weight of four males exceeded that
of two females by six and a half ounces; in another litter the average
weight of four males exceeded that of one female by less than one ounce;
the same males when three weeks old, exceeded the female by seven and a
half ounces, and at the age of six weeks by nearly fourteen ounces. Mr.
Wright of Yeldersley House, in a letter to Mr. Cupples, says: “I have
taken notes on the sizes and weights of puppies of many litters, and as far
as my experience goes, dog-puppies as a rule differ very little from
bitches till they arrive at about five or six months old; and then the dogs
begin to increase, gaining upon the bitches both in weight and size. At
birth, and for several weeks afterwards, a bitch-puppy will occasionally be
larger than any of the dogs, but they are invariably beaten by them later.”
Mr. McNeill, of Colonsay, concludes that “the males do not attain their
full growth till over two years old, though the females attain it sooner.”
According to Mr. Cupples’ experience, male dogs go on growing in stature
till they are from twelve to eighteen months old, and in weight till from
eighteen to twenty-four months old; whilst the females cease increasing in
stature at the age of from nine to fourteen or fifteen months, and in
weight at the age of from twelve to fifteen months. From these various
statements it is clear that the full difference in size between the male
and female Scotch deer-hound is not acquired until rather late in life.
The males almost exclusively are used for coursing, for, as Mr. McNeill
informs me, the females have not sufficient strength and weight to pull
down a full-grown deer. From the names used in old legends, it appears, as
I hear from Mr. Cupples, that, at a very ancient period, the males were the
most celebrated, the females being mentioned only as the mothers of famous
dogs. Hence, during many generations, it is the male which has been
chiefly tested for strength, size, speed, and courage, and the best will
have been bred from. As, however, the males do not attain their full
dimensions until rather late in life, they will have tended, in accordance
with the law often indicated, to transmit their characters to their male
offspring alone; and thus the great inequality in size between the sexes of
the Scotch deer-hound may probably be accounted for.

[Fig. 65. Head of Common wild boar, in prime of life (from Brehm).]

The males of some few quadrupeds possess organs or parts developed solely
as a means of defence against the attacks of other males. Some kinds of
deer use, as we have seen, the upper branches of their horns chiefly or
exclusively for defending themselves; and the Oryx antelope, as I am
informed by Mr. Bartlett, fences most skilfully with his long, gently
curved horns; but these are likewise used as organs of offence. The same
observer remarks that rhinoceroses in fighting, parry each other’s sidelong
blows with their horns, which clatter loudly together, as do the tusks of
boars. Although wild boars fight desperately, they seldom, according to
Brehm, receive fatal wounds, as the blows fall on each other’s tusks, or on
the layer of gristly skin covering the shoulder, called by the German
hunters, the shield; and here we have a part specially modified for
defence. With boars in the prime of life (Fig. 65) the tusks in the lower
jaw are used for fighting, but they become in old age, as Brehm states, so
much curved inwards and upwards over the snout that they can no longer be
used in this way. They may, however, still serve, and even more
effectively, as a means of defence. In compensation for the loss of the
lower tusks as weapons of offence, those in the upper jaw, which always
project a little laterally, increase in old age so much in length and curve
so much upwards that they can be used for attack. Nevertheless, an old
boar is not so dangerous to man as one at the age of six or seven years.
(39. Brehm, ‘Thierleben,’ B. ii. ss. 729-732.)

[Fig. 66. Skull of the Babirusa Pig (from Wallace’s ‘Malay Archipelago’).]

In the full-grown male Babirusa pig of Celebes (Fig. 66), the lower tusks
are formidable weapons, like those of the European boar in the prime of
life, whilst the upper tusks are so long and have their points so much
curled inwards, sometimes even touching the forehead, that they are utterly
useless as weapons of attack. They more nearly resemble horns than teeth,
and are so manifestly useless as teeth that the animal was formerly
supposed to rest his head by hooking them on to a branch! Their convex
surfaces, however, if the head were held a little laterally, would serve as
an excellent guard; and hence, perhaps, it is that in old animals they “are
generally broken off, as if by fighting.” (40. See Mr. Wallace’s
interesting account of this animal, ‘The Malay Archipelago,’ 1869, vol. i.
p. 435.) Here, then, we have the curious case of the upper tusks of the
Babirusa regularly assuming during the prime of life a structure which
apparently renders them fitted only for defence; whilst in the European
boar the lower tusks assume in a less degree and only during old age nearly
the same form, and then serve in like manner solely for defence.

[Fig. 67. Head of female Aethopian wart-hog, from ‘Proc. Zool. Soc.’ 1869,
shewing the same characters as the male, though on a reduced scale.
N.B. When the engraving was first made, I was under the impression that it
represented the male.]

In the wart-hog (see Phacochoerus aethiopicus, Fig. 67) the tusks in the
upper jaw of the male curve upwards during the prime of life, and from
being pointed serve as formidable weapons. The tusks in the lower jaw are
sharper than those in the upper, but from their shortness it seems hardly
possible that they can be used as weapons of attack. They must, however,
greatly strengthen those in the upper jaw, from being ground so as to fit
closely against their bases. Neither the upper nor the lower tusks appear
to have been specially modified to act as guards, though no doubt they are
to a certain extent used for this purpose. But the wart-hog is not
destitute of other special means of protection, for it has, on each side of
the face, beneath the eyes, a rather stiff, yet flexible, cartilaginous,
oblong pad (Fig. 67), which projects two or three inches outwards; and it
appeared to Mr. Bartlett and myself, when viewing the living animal, that
these pads, when struck from beneath by the tusks of an opponent, would be
turned upwards, and would thus admirably protect the somewhat prominent
eyes. I may add, on the authority of Mr. Bartlett, that these boars when
fighting stand directly face to face.

Lastly, the African river-hog (Potomochoerus penicillatus) has a hard
cartilaginous knob on each side of the face beneath the eyes, which answers
to the flexible pad of the wart-hog; it has also two bony prominences on
the upper jaw above the nostrils. A boar of this species in the Zoological
Gardens recently broke into the cage of the wart-hog. They fought all
night long, and were found in the morning much exhausted, but not seriously
wounded. It is a significant fact, as shewing the purposes of the above-
described projections and excrescences, that these were covered with blood,
and were scored and abraded in an extraordinary manner.

Although the males of so many members of the pig family are provided with
weapons, and as we have just seen with means of defence, these weapons seem
to have been acquired within a rather late geological period. Dr. Forsyth
Major specifies (41. ‘Atti della Soc. Italiana di Sc. Nat.’ 1873, vol. xv.
fasc. iv.) several miocene species, in none of which do the tusks appear to
have been largely developed in the males; and Professor Rutimeyer was
formerly struck with this same fact.

The mane of the lion forms a good defence against the attacks of rival
lions, the one danger to which he is liable; for the males, as Sir A. Smith
informs me, engage in terrible battles, and a young lion dares not approach
an old one. In 1857 a tiger at Bromwich broke into the cage of a lion and
a fearful scene ensued: “the lion’s mane saved his neck and head from
being much injured, but the tiger at last succeeded in ripping up his
belly, and in a few minutes he was dead.” (42. ‘The Times,’ Nov. 10,
1857. In regard to the Canada lynx, see Audubon and Bachman, ‘Quadrupeds
of North America,’ 1846, p. 139.) The broad ruff round the throat and chin
of the Canadian lynx (Felis canadensis) is much longer in the male than in
the female; but whether it serves as a defence I do not know. Male seals
are well known to fight desperately together, and the males of certain
kinds (Otaria jubata) (43. Dr. Murie, on Otaria, ‘Proc. Zoolog. Soc.’
1869, p. 109. Mr. J.A. Allen, in the paper above quoted (p. 75), doubts
whether the hair, which is longer on the neck in the male than in the
female, deserves to be called a mane.) have great manes, whilst the females
have small ones or none. The male baboon of the Cape of Good Hope
(Cynocephalus porcarius) has a much longer mane and larger canine teeth
than the female; and the mane probably serves as a protection, for, on
asking the keepers in the Zoological Gardens, without giving them any clue
to my object, whether any of the monkeys especially attacked each other by
the nape of the neck, I was answered that this was not the case, except
with the above baboon. In the Hamadryas baboon, Ehrenberg compares the
mane of the adult male to that of a young lion, whilst in the young of both
sexes and in the female the mane is almost absent.

It appeared to me probable that the immense woolly mane of the male
American bison, which reaches almost to the ground, and is much more
developed in the males than in the females, served as a protection to them
in their terrible battles; but an experienced hunter told Judge Caton that
he had never observed anything which favoured this belief. The stallion
has a thicker and fuller mane than the mare; and I have made particular
inquiries of two great trainers and breeders, who have had charge of many
entire horses, and am assured that they “invariably endeavour to seize one
another by the neck.” It does not, however, follow from the foregoing
statements, that when the hair on the neck serves as a defence, that it was
originally developed for this purpose, though this is probable in some
cases, as in that of the lion. I am informed by Mr. McNeill that the long
hairs on the throat of the stag (Cervus elaphus) serve as a great
protection to him when hunted, for the dogs generally endeavour to seize
him by the throat; but it is not probable that these hairs were specially
developed for this purpose; otherwise the young and the females would have
been equally protected.


Before describing in the next chapter, the differences between the sexes in
voice, odours emitted, and ornaments, it will be convenient here to
consider whether the sexes exert any choice in their unions. Does the
female prefer any particular male, either before or after the males may
have fought together for supremacy; or does the male, when not a
polygamist, select any particular female? The general impression amongst
breeders seems to be that the male accepts any female; and this owing to
his eagerness, is, in most cases, probably the truth. Whether the female
as a general rule indifferently accepts any male is much more doubtful. In
the fourteenth chapter, on Birds, a considerable body of direct and
indirect evidence was advanced, shewing that the female selects her
partner; and it would be a strange anomaly if female quadrupeds, which
stand higher in the scale and have higher mental powers, did not generally,
or at least often, exert some choice. The female could in most cases
escape, if wooed by a male that did not please or excite her; and when
pursued by several males, as commonly occurs, she would often have the
opportunity, whilst they were fighting together, of escaping with some one
male, or at least of temporarily pairing with him. This latter contingency
has often been observed in Scotland with female red-deer, as I am informed
by Sir Philip Egerton and others. (44. Mr. Boner, in his excellent
description of the habits of the red-deer in Germany (‘Forest Creatures,’
1861, p. 81) says, “while the stag is defending his rights against one
intruder, another invades the sanctuary of his harem, and carries off
trophy after trophy.” Exactly the same thing occurs with seals; see Mr.
J.A. Allen, ibid. p. 100.)

It is scarcely possible that much should be known about female quadrupeds
in a state of nature making any choice in their marriage unions. The
following curious details on the courtship of one of the eared seals
(Callorhinus ursinus) are given (45. Mr. J.A. Allen in ‘Bull. Mus. Comp.
Zoolog. of Cambridge, United States,’ vol. ii. No. 1, p. 99.) on the
authority of Capt. Bryant, who had ample opportunities for observation. He
says, “Many of the females on their arrival at the island where they breed
appear desirous of returning to some particular male, and frequently climb
the outlying rocks to overlook the rookeries, calling out and listening as
if for a familiar voice. Then changing to another place they do the same
again…As soon as a female reaches the shore, the nearest male goes down
to meet her, making meanwhile a noise like the clucking of a hen to her
chickens. He bows to her and coaxes her until he gets between her and the
water so that she cannot escape him. Then his manner changes, and with a
harsh growl he drives her to a place in his harem. This continues until
the lower row of harems is nearly full. Then the males higher up select
the time when their more fortunate neighbours are off their guard to steal
their wives. This they do by taking them in their mouths and lifting them
over the heads of the other females, and carefully placing them in their
own harem, carrying them as cats do their kittens. Those still higher up
pursue the same method until the whole space is occupied. Frequently a
struggle ensues between two males for the possession of the same female,
and both seizing her at once pull her in two or terribly lacerate her with
their teeth. When the space is all filled, the old male walks around
complacently reviewing his family, scolding those who crowd or disturb the
others, and fiercely driving off all intruders. This surveillance always
keeps him actively occupied.”

As so little is known about the courtship of animals in a state of nature,
I have endeavoured to discover how far our domesticated quadrupeds evince
any choice in their unions. Dogs offer the best opportunity for
observation, as they are carefully attended to and well understood. Many
breeders have expressed a strong opinion on this head. Thus, Mr. Mayhew
remarks, “The females are able to bestow their affections; and tender
recollections are as potent over them as they are known to be in other
cases, where higher animals are concerned. Bitches are not always prudent
in their loves, but are apt to fling themselves away on curs of low degree.
If reared with a companion of vulgar appearance, there often springs up
between the pair a devotion which no time can afterwards subdue. The
passion, for such it really is, becomes of a more than romantic endurance.”
Mr. Mayhew, who attended chiefly to the smaller breeds, is convinced that
the females are strongly attracted by males of a large size. (46. ‘Dogs:
their Management,’ by E. Mayhew, M.R.C.V.S., 2nd ed., 1864, pp. 187-192.)
The well-known veterinary Blaine states (47. Quoted by Alex. Walker, ‘On
Intermarriage,’ 1838, p. 276; see also p. 244.) that his own female pug dog
became so attached to a spaniel, and a female setter to a cur, that in
neither case would they pair with a dog of their own breed until several
weeks had elapsed. Two similar and trustworthy accounts have been given me
in regard to a female retriever and a spaniel, both of which became
enamoured with terrier-dogs.

Mr. Cupples informs me that he can personally vouch for the accuracy of the
following more remarkable case, in which a valuable and wonderfully-
intelligent female terrier loved a retriever belonging to a neighbour to
such a degree, that she had often to be dragged away from him. After their
permanent separation, although repeatedly shewing milk in her teats, she
would never acknowledge the courtship of any other dog, and to the regret
of her owner never bore puppies. Mr. Cupples also states, that in 1868, a
female deerhound in his kennel thrice produced puppies, and on each
occasion shewed a marked preference for one of the largest and handsomest,
but not the most eager, of four deerhounds living with her, all in the
prime of life. Mr. Cupples has observed that the female generally favours a
dog whom she has associated with and knows; her shyness and timidity at
first incline her against a strange dog. The male, on the contrary, seems
rather inclined towards strange females. It appears to be rare when the
male refuses any particular female, but Mr. Wright, of Yeldersley House, a
great breeder of dogs, informs me that he has known some instances; he
cites the case of one of his own deerhounds, who would not take any notice
of a particular female mastiff, so that another deerhound had to be
employed. It would be superfluous to give, as I could, other instances,
and I will only add that Mr. Barr, who has carefully bred many bloodhounds,
states that in almost every instance particular individuals of opposite
sexes shew a decided prefered.

Comments are closed.